
If 𝑑! < 1 − 𝛼 ⋅ 𝒓"
# (𝑢)/𝜃 do:  

For each v ∈ N(u) do: 

𝒓"
#$% 𝑣 ← 𝒓"

#$% 𝑣 + %&' ⋅𝒓!
" (!)

𝒅𝒖
;

Else do:  

Independently sample each 𝑣 ∈ 𝑁(𝑢) w.p. %&' ⋅𝒓!
" (!)

-⋅.$
; 

For each sampled neighbor 𝑣 ∈ 𝑁(𝑢) do: 
𝒓"
#$% 𝑣 ← 𝒓"

#$% 𝑣 + 𝜃; 
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Problem Definition

Ø Single-Node PageRank Query: Given an undirected graph 𝐺 = (𝑉, 𝐸), 
a target node 𝑡 ∈ 𝑉 and a constant relative error 𝑐 ∈ (0,1), we aim to 
derive an estimated PageRank score =𝝅 𝑡 such that

𝝅 𝑡 − =𝝅 𝑡 < 𝑐 ⋅ 𝝅(𝑡)
holds with a constant probability. 

Experiments

Limitations of Existing Methods

on undirected graphs! 

Our Contributions

Ø PageRank: 
• History: PageRank was first proposed by Google’s cofounders to 

evaluate the importance of web pages in Google’s search engine.

• Intuition: a web page is important if
• it is linked by many other web pages,
• or by some important pages.

• Applications has been far beyond web search, covering:
information retrieval, recommender systems, social networks, 
biology, chemistry, neuroscience, …

• Definition Formula of the PageRank vector 𝝅 : 
𝝅 = 1 − 𝛼 𝐏𝝅 + 𝛼 ⋅ 𝟏

0
.

• 𝐏 = 𝐀𝐃!𝟏: the probability transition matrix; 
• 𝐀 and 𝐃: the adjacency / diagonal degree matrix;  
• 𝝅(𝑡): the PageRank score of node 𝑡.

• Probabilistic Interpretation:  
• 𝝅(𝑡): an 𝜶-random walk generated from a random source node 

terminates at node 𝑡. 

𝑢

𝑣

𝑢

𝑣

At each step (e.g., at node 𝑢), the walk 
• either terminates at 𝑢 w.p. 𝛼;
• or moves to a random neighbor 𝑣 ∈ 𝑁(𝑢)

w.p. 1 − 𝛼

Ø A Humble Goal: a local algorithm with 𝑜(𝑛) query time to derive =𝝅 𝑡

only explores a small fraction of graph 𝐺

Algorithms Worst-Case Query Time Complexity

Power Iteration [WWW’98] +𝑂 𝑚

Monte-Carlo [Internet Mathematics’05] +𝑂 𝑛

LocalPush [Lofgren et al.’13] +𝑂 min{𝑛 ⋅ 𝑑# , 𝑚}

RBS [KDD’20] +𝑂 n

FastPPR [KDD’14] 7𝑶 𝒏 ⋅ 𝒅𝒕

BiPPR [WAW’15, WSDM’16] 7𝑶 𝒏 ⋅ 𝒅𝒕

SubgraphPush [FOCS’18] +𝑂 min{𝑛
%
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(
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SetPush [Ours] 7𝑶 𝐦𝐢𝐧{𝒅𝒕, 𝒎}

• 𝑑#: degree of node 𝑡;   𝑑: average node degree;      Δ: maximum node degree; 
• 𝑛: the number of nodes in 𝐺;      𝑚: the number of edges in 𝐺, 𝑚 = 𝑛𝑑; 
• +𝑂: all poly-logarithmic factors are omitted.

Ø High-Level  Idea: forward push probability from the target node 𝑡

randomized forwad push 

SOTA
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• utilize the symmetry of random walk probability on undirected graphs;
𝝅1 𝑡 ⋅ 𝑑1 = 𝝅" 𝑠 ⋅ 𝑑",

The probability that an 𝛼-walk 
generated from 𝒕 terminates at 𝒔

The probability that an 𝛼-walk 
generated from 𝒔 terminates at 𝒕

for ∀𝑠, 𝑡 ∈ 𝑉
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• For small-degree nodes: deterministically 
push probability mass to all neighbors;

• For large-degree nodes: sample a small 
fraction of neighbors to push probability. 

Datasets # of nodes 𝒏 # of edges 𝒎

Youtube (YT) 1,138,499 5,980,886

IndoChina (IC) 7,414,768 301,969,638

Orkut-Links (OL) 3,072,441 234,369,798

Friendster (fr) 68,349,466 3,623,698,684

Ø Monte-Carlo method: =𝝅 𝑡 = # of 𝛼-walks terminates at 𝑡
total # of 𝛼-walks generated in 𝐺

• According to the Pigeonhole Principle, to estimate 𝜋 𝑡 = 𝑂(1/𝑛), we 
need to generate Ω(𝑛) random walks in order to touch node 𝑡 at least once. 

… …

Ø LocalPush method: 

For each v ∈ N(u) do: 

𝒓"
#$% 𝑣 ← 𝒓"

#$% 𝑣 + %&' ⋅𝒓!
" (!)

𝒅𝒗
;

• Deterministically touch every neighbor to push 
probability. Thus for large-degree nodes, the push 
method cost O(𝑛) right after the first push step. 

Ø Some nice properties of pagerank held only on undirected graphs

• Lower bound on directed graphs: F𝑂 min{ 𝑛Δ, 𝑛
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