

Estimating Single-Node PageRank

in $\widetilde{O}(\min\{d_t, \sqrt{m}\})$ Time

on undirected graphs!

Hanzhi Wang and Zhewei Wei[™], Renmin University of China

Problem Definition

Single-Node PageRank Query: Given an undirected graph G = (V, E), a target node t ∈ V and a constant relative error c ∈ (0,1), we aim to derive an estimated PageRank score â(t) such that

 $|\boldsymbol{\pi}(t) - \widehat{\boldsymbol{\pi}}(t)| < c \cdot \boldsymbol{\pi}(t)$

holds with a constant probability.

Our Contributions

> A Humble Goal: a local algorithm with o(n) query time to derive $\widehat{\pi}(t)$ only explores a small fraction of graph *G*

Algorithms

Worst-Case Query Time Complexity

- > PageRank:
 - **History:** PageRank was first proposed by Google's cofounders to **evaluate the importance of web pages** in Google's search engine.
 - Intuition: a web page is important if
 - it is linked by many other web pages,
 - or by some important pages.
 - Applications has been far beyond web search, covering: information retrieval, recommender systems, social networks, biology, chemistry, neuroscience, ...
 - Definition Formula of the PageRank vector π : $\pi = (1 - \alpha)P\pi + \alpha \cdot \frac{1}{n}.$
 - $\mathbf{P} = \mathbf{A}\mathbf{D}^{-1}$: the probability transition matrix;
 - A and D: the adjacency / diagonal degree matrix;
 - $\pi(t)$: the PageRank score of node t.
 - Probabilistic Interpretation:
 - $\pi(t)$: an α -random walk generated from a random source node

Power Iteration [www'98]	$\tilde{O}(m)$	
Monte-Carlo [Internet Mathematics'05]	$\tilde{O}(n)$	
LocalPush [Lofgren et al.'13]	$\tilde{O}(\min\{n \cdot d_t, m\})$	
RBS [KDD'20]	$\tilde{O}(n)$	
FastPPR [KDD'14]	$\widetilde{O}(\sqrt{n \cdot d_t})$ SOTA	
BiPPR [WAW'15, WSDM'16]	$\widetilde{O}(\sqrt{n \cdot d_t})$ SOTA	
SubgraphPush [FOCS'18]	$\tilde{O}\left(\min\{n^{\frac{2}{3}}\Delta^{\frac{1}{3}}, n^{\frac{4}{5}}d^{\frac{1}{5}}\}\right)$	
SetPush [Ours]	$\widetilde{O}(\min\{d_t,\sqrt{m}\})$	

- d_t : degree of node t; d: average node degree; Δ : maximum node degree;
- *n*: the number of nodes in *G*; *m*: the number of edges in G, m = nd;
- \tilde{O} : all poly-logarithmic factors are omitted.
- ► **High-Level Idea:** forward push probability from the target node *t*
 - utilize the symmetry of random walk probability on undirected graphs;

 $\pi_{s}(t) \cdot d_{s} = \pi_{t}(s) \cdot d_{t}, \quad \text{for } \forall s, t \in V$

terminates at node t. At each step (e.g., at node u), the walk

- either terminates at u w.p. α ;
- or moves to a random neighbor $v \in N(u)$ w.p. $1 - \alpha$

Limitations of Existing Methods

> Monte-Carlo method: $\hat{\pi}(t) = \frac{\# \text{ of } \alpha \text{-walks terminates at } t}{\text{total } \# \text{ of } \alpha \text{-walks generated in } G}$

• According to the **Pigeonhole Principle**, to estimate $\pi(t) = O(1/n)$, we need to generate $\Omega(n)$ random walks in order to touch node t at least once.

> LocalPush method:

• Deterministically touch every neighbor to push probability. Thus for large-degree nodes, the push method cost O(n) right after the first push step.

For each $v \in N(u)$ do:

 $\sqsubseteq \boldsymbol{r}_t^{(i+1)}(v) \leftarrow \boldsymbol{r}_t^{(i+1)}(v) + \frac{(1-\alpha) \cdot \boldsymbol{r}_t^{(i)}(u)}{\boldsymbol{d}_v};$

The probability that an α -walk 2 generated **from s** terminates **at** t

The probability that an α -walk generated from *t* terminates at *s*

randomized forwad push

 $\begin{array}{ccc}
& \Pr\{s \to t\} = \frac{1}{d_s} \cdot \frac{1}{d_u} \cdot \frac{1}{d_v} \cdots \frac{1}{d_w} \\
& \Psi^{t} & \Psi^{t} & \Psi^{t} = \frac{1}{d_u} \cdot \frac{1}{d_v} \cdots \frac{1}{d_w} \cdot \frac{1}{d_w} \\
& \Psi^{t} & \Psi^{t} \to s\} = \frac{1}{d_u} \cdot \frac{1}{d_v} \cdots \frac{1}{d_w} \cdot \frac{1}{d_s}
\end{array}$

• $\boldsymbol{\pi}(t) = \frac{1}{n} \cdot \sum_{u \in V} \boldsymbol{\pi}_u(t) = \frac{1}{n} \cdot \sum_{u \in V} \frac{d_t}{d_u} \cdot \boldsymbol{\pi}_t(u)$

- For **small-degree nodes**: deterministically push probability mass to all neighbors;
- For **large-degree nodes**: sample a small fraction of neighbors to push probability.

If $d_u < (1 - \alpha) \cdot r_t^{(i)}(u) / \theta$ do:

Else do:

Independently sample each $v \in N(u)$ w.p. $\frac{(1-\alpha) \cdot r_t^{(i)}(u)}{\theta \cdot d_u}$;

Some nice properties of pagerank held only on undirected graphs • Lower bound on directed graphs: $\tilde{O}\left(\min\{\sqrt{n\Delta}, n^{\frac{2}{3}}d^{\frac{1}{3}}\}\right)$ For each sampled neighbor $v \in N(u)$ do: $\lfloor r_t^{(i+1)}(v) \leftarrow r_t^{(i+1)}(v) + \theta;$

Experiments

Datasets	# of nodes n	# of edges m
Youtube (YT)	1,138,499	5,980,886
IndoChina (IC)	7,414,768	301,969,638
Orkut-Links (OL)	3,072,441	234,369,798
Friendster (fr)	68,349,466	3,623,698,684

