中国人民大㶅
RENMIN UNIVERSITY OF CHINA
in $\widetilde{O}\left(\min \left\{d_{t}, \sqrt{m}\right\}\right)$ Time
on undirected graphs！

Hanzhi Wang and Zhewei Wei ${ }^{\boxtimes}$ ，Renmin University of China

Problem Definition

＞Single－Node PageRank Query：Given an undirected graph $G=(V, E)$ ， a target node $t \in V$ and a constant relative error $c \in(0,1)$ ，we aim to derive an estimated PageRank score $\widehat{\boldsymbol{\pi}}(t)$ such that

$$
|\boldsymbol{\pi}(t)-\widehat{\boldsymbol{\pi}}(t)|<c \cdot \boldsymbol{\pi}(t)
$$

holds with a constant probability．

＞PageRank：

－History：PageRank was first proposed by Google＇s cofounders to evaluate the importance of web pages in Google＇s search engine．
－Intuition：a web page is important if
－it is linked by many other web pages，
－or by some important pages．

－Applications has been far beyond web search，covering： information retrieval，recommender systems，social networks， biology，chemistry，neuroscience，．．．
－Definition Formula of the PageRank vector $\boldsymbol{\pi}$ $\boldsymbol{\pi}=(1-\alpha) \mathbf{P} \boldsymbol{\pi}+\alpha \cdot \frac{1}{n}$ ．
－ $\mathbf{P}=\mathbf{A D}^{\mathbf{1}}$ ：the probability transition matrix；
－A and D：the adjacency／diagonal degree matrix；

－ $\boldsymbol{\pi}(t)$ ：the PageRank score of node t ．

Our Contributions

＞A Humble Goal：a local algorithm with $o(n)$ query time to derive $\widehat{\boldsymbol{\pi}}(t)$
only explores a small fraction of graph G

Algorithms	Worst－Case Query Time Complexity
Power Iteration［WWW＇98］	$\tilde{O}(m)$
Monte－Carlo［Internet Mathematics＇05］	$\tilde{O}(n)$
LocalPush［Lofgren et al．＇13］	$\tilde{O}\left(\min \left\{n \cdot d_{t}, m\right\}\right)$
RBS［KDD＇20］	$\tilde{O}(n)$
FastPPR［KDD＇14］	$\widetilde{\boldsymbol{O}}\left(\sqrt{\boldsymbol{n} \cdot \boldsymbol{d}_{\boldsymbol{t}}}\right)$
BiPPR［WAW＇15，WSDM＇16］	$\widetilde{\boldsymbol{O}}\left(\sqrt{\boldsymbol{n} \cdot \boldsymbol{d}_{\boldsymbol{t}}}\right)$
SuTA	
SOTA	
SetPushraphPush［FOCS＇$\left.{ }^{\prime} 18\right]$	$\tilde{O}\left(\min \left\{n^{\frac{2}{3}} \Delta^{\frac{1}{3}}, n^{\frac{4}{5}} d^{\frac{1}{5}}\right\}\right)$
$\widetilde{\boldsymbol{O}}\left(\min \left\{\boldsymbol{d}_{\boldsymbol{t}}, \sqrt{\boldsymbol{m}}\right\}\right)$	

－d_{t} ：degree of node $t ; \quad d$ ：average node degree；$\quad \Delta$ ：maximum node degree；
－n ：the number of nodes in $G ; \quad m$ ：the number of edges in $G, m=n d$ ；
－\tilde{O} ：all poly－logarithmic factors are omitted．
＞High－Level Idea：forward push probability from the target node t
－utilize the symmetry of random walk probability on undirected graphs；

$$
\boldsymbol{\pi}_{s}(t) \cdot d_{s}=\pi_{t}(s) \cdot d_{t}, \quad \text { for } \forall s, t \in V
$$

The probability that an α－walk generated from s terminates at t

The probability that an α－walk generated from t terminates at s

 $\operatorname{Pr}\{s \rightarrow t\}=\frac{1}{d_{s}} \cdot \frac{1}{d_{u}} \cdot \frac{1}{d_{v}} \cdots \frac{1}{d_{w}}$ $\operatorname{Pr}\{t \rightarrow s\}=\frac{1}{d_{u}} \cdot \frac{1}{d_{v}} \cdots \frac{1}{d_{w}} \cdot \frac{1}{d_{s}}$
－ $\boldsymbol{\pi}(t)=\frac{1}{n} \cdot \sum_{u \in V} \boldsymbol{\pi}_{u}(t)=\frac{1}{n} \cdot \sum_{u \in V} \frac{d_{t}}{d_{u}} \cdot \pi_{t}(u)$
－For small－degree nodes：deterministically
randomized forwad push push probability mass to all neighbors；
－For large－degree nodes：sample a small fraction of neighbors to push probability．

If $d_{u}<(1-\alpha) \cdot \boldsymbol{r}_{t}^{(i)}(u) / \theta$ do：
For each $v \in N(u)$ do：

$$
L_{t}^{(i+1)}(v) \leftarrow \boldsymbol{r}_{t}^{(i+1)}(v)+\frac{(1-\alpha) \cdot \boldsymbol{r}_{t}^{(i)}(u)}{d_{u}}
$$

Else do：

Independently sample each $v \in N(u)$ w．p．$\frac{(1-\alpha) \cdot \boldsymbol{r}_{t}^{(i)}(u)}{\theta \cdot d_{u}}$ ；
For each sampled neighbor $v \in N(u)$ do： $\boldsymbol{r}_{t}^{(i+1)}(v) \leftarrow \boldsymbol{r}_{t}^{(i+1)}(v)+\theta ;$

Experiments

Datasets	\＃of nodes \boldsymbol{n}	\＃of edges \boldsymbol{m}
Youtube（YT）	$1,138,499$	$5,980,886$
IndoChina（IC）	$7,414,768$	$301,969,638$
Orkut－Links（OL）	$3,072,441$	$234,369,798$
Friendster（fr）	$68,349,466$	$3,623,698,684$

